Posted by
Ed
15 yrs ago
* Unlike other domesticated creatures, the house cat contributes little to human survival. Researchers have therefore wondered how and why cats came to live among people.
* Experts traditionally thought that the Egyptians were the first to domesticate the cat, some 3,600 years ago.
* But recent genetic and archaeological discoveries indicate that cat domestication began in the Fertile Crescent, perhaps around 10,000 years ago, when agriculture was getting under way.
* The findings suggest that cats started making themselves at home around people to take advantage of the mice and food scraps found in their settlements.
It is by turns aloof and affectionate, serene and savage, endearing and exasperating. Despite its mercurial nature, however, the house cat is the most popular pet in the world. A third of American households have feline members, and more than 600 million cats live among humans worldwide. Yet as familiar as these creatures are, a complete understanding of their origins has proved elusive. Whereas other once wild animals were domesticated for their milk, meat, wool or servile labor, cats contribute virtually nothing in the way of sustenance or work to human endeavor. How, then, did they become commonplace fixtures in our homes?
Scholars long believed that the ancient Egyptians were the first to keep cats as pets, starting around 3,600 years ago. But genetic and archaeological discoveries made over the past five years have revised this scenario—and have generated fresh insights into both the ancestry of the house cat and how its relationship with humans evolved.
Cat’s Cradle
The question of where house cats first arose has been challenging to resolve for several reasons. Although a number of investigators suspected that all varieties descend from just one cat species—Felis silvestris, the wildcat—they could not be certain. In addition, that species is not confined to a small corner of the globe. It is represented by populations living throughout the Old World—from Scotland to South Africa and from Spain to Mongolia—and until recently scientists had no way of determining unequivocally which of these wildcat populations gave rise to the tamer, so-called domestic kind. Indeed, as an alternative to the Egyptian origins hypothesis, some researchers had even proposed that cat domestication occurred in a number of different locations, with each domestication spawning a different breed. Confounding the issue was the fact that members of these wildcat groups are hard to tell apart from one another and from feral domesticated cats with so-called mackerel-tabby coats because all of them have the same pelage pattern of curved stripes and they interbreed freely with one another, further blurring population boundaries.
In 2000 one of us (Driscoll) set out to tackle the question by assembling DNA samples from some 979 wildcats and domestic cats in southern Africa, Azerbaijan, Kazakhstan, Mongolia and the Middle East. Because wildcats typically defend a single territory for life, he expected that the genetic composition of wildcat groups would vary across geography but remain stable over time, as has occurred in many other cat species. If regional indigenous groups of these animals could be distinguished from one another on the basis of their DNA and if the DNA of domestic cats more closely resembled that of one of the wildcat populations, then he would have clear evidence for where domestication began.
In the genetic analysis, published in 2007, Driscoll, another of us (O’Brien) and their colleagues focused on two kinds of DNA that molecular biologists traditionally examine to differentiate subgroups of mammal species: DNA from mitochondria, which is inherited exclusively from the mother, and short, repetitive sequences of nuclear DNA known as microsatellites. Using established computer routines, they assessed the ancestry of each of the 979 individuals sampled based on their genetic signatures. Specifically, they measured how similar each cat’s DNA was to that of all the other cats and grouped the animals having similar DNA together. They then asked whether most of the animals in a group lived in the same region.
The results revealed five genetic clusters, or lineages, of wildcats. Four of these lineages corresponded neatly with four of the known subspecies of wildcat and dwelled in specific places: F. silvestris silvestris in Europe, F. s. bieti in China, F. s. ornata in Central Asia and F. s. cafra in southern Africa. The fifth lineage, however, included not only the fifth known subspecies of wildcat—F. s. lybica in the Middle East—but also the hundreds of domestic cats that were sampled, including purebred and mixed-breed felines from the U.S., the U.K. and Japan. In fact, genetically, F. s. lybica wildcats collected in remote deserts of Israel, the United Arab Emirates and Saudi Arabia were virtually indistinguishable from domestic cats. That the domestic cats grouped with F. s. lybica alone among wildcats meant that domestic cats arose in a single locale, the Middle East, and not in other places where wildcats are common.
More http://www.scientificamerican.com/article.cfm?id=the-taming-of-the-cat
Please support our advertisers:
You must be logged in to be able to reply.
Login now
Copy Link
Facebook
Gmail
Mail